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A Two-Continua Approach to Eulerian Simulation of Water Spray
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Aarhus University

Abstract

Physics based simulation of the dynamics of water spray - water
droplets dispersed in air - is a means to increase the visual plausi-
bility of computer graphics modeled phenomena such as waterfalls,
water jets and stormy seas. Spray phenomena are frequently en-
countered by the visual effects industry and often challenge state
of the art methods. Current spray simulation pipelines typically
employ a combination of Lagrangian (particle) and Eulerian (volu-
metric) methods - the Eulerian methods being used for parts of the
spray where individual droplets are not apparent. However, exist-
ing Eulerian methods in computer graphics are based on gas solvers
that will for example exhibit hydrostatic equilibrium in certain sce-
narios where the air is expected to rise and the water droplets fall.
To overcome this problem, we propose to simulate spray in the Eu-
lerian domain as a two-way coupled two-continua of air and water
phases co-existing at each point in space. The fundamental equa-
tions originate in applied physics and we present a number of con-
tributions that make Eulerian two-continua spray simulation feasi-
ble for computer graphics applications. The contributions include
a Poisson equation that fits into the operator splitting methodology
as well as (semi-)implicit discretizations of droplet diffusion and
the drag force with improved stability properties. As shown by sev-
eral examples, our approach allows us to more faithfully capture the
dynamics of spray than previous Eulerian methods.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Physically based modeling

Keywords: animation, physics based animation, fluid simulation,
multiphase flow, water spray simulation

Links: DL PDF

1 Introduction

The problem of realistically and efficiently simulating water and air
is of great importance to visual effects for feature films and video
games. However, this problem continues to challenge researchers
and practitioners in the computer graphics field. The sizable magni-
tude of the challenge is rooted partly in the wide range of scales at
which water phenomena appear in nature - from deep water waves
in the ocean to tiny droplets dispersed in the air. In computer graph-
ics, specialized mathematical models and algorithms are applied to
distinct phenomena to achieve the final fluid animation: from linear
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Figure 1: Water droplets fall from a height of 100m and together
with the air form a spray that interacts with a moving obstacle.
Simulated using the Eulerian method proposed in this paper.

models of deep water waves synthesized in Fourier space to non-
linear models of turbulent topologically complex water, foam and
spray simulated using a combination of Eulerian (volumetric) and
Lagrangian (particle) methods.

Water spray - water droplets dispersed in air - occurs in nature as
part of a wide range of phenomena: waterfalls, water jets, air inter-
acting with waves and splashes to mention a few (Figure 2). The
animation and visual effects industries are frequently faced with
the challenge of modeling spray phenomena digitally and as such
the problem of properly simulating spray is of great interest to the
graphics community. However, simulating water spray turns out to
be complex due to the large number of droplets, the variation in
droplet size, and the fact that both the air and water phases must be
accounted for to obtain the proper behavior. To accommodate this,
several state of the art spray pipelines in the visual effects industry
employ a combination of techniques [Geiger et al. 2006; Froemling
et al. 2007]: Lagrangian particles are used for parts of the spray
where individual droplets - or agglomerates thereof - are apparent,
Eulerian grid methods are used for regions that do not exhibit a par-
ticulate look, and heuristic algorithms create plausible transitions
between the two. Thus, often the qualitative (as opposed to quan-
titative) aspects will determine the choice between an Eulerian and
Lagrangian method for modeling a particular spray phenomenon.
Even though Eulerian spray simulation is an important part of in-
dustry water simulation pipelines, it typically requires a fair amount
of tweaking to obtain visually plausible results in practice. In fact,
Eulerian spray is currently simulated using gas solvers [Takahashi
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Figure 2: Photographs of real spray phenomena. From left to right:
(a) Waterfall (b) Spray creates an intricate pattern in the air.

et al. 2003; Kim et al. 2006; Losasso et al. 2008] that fail to capture
the correct dynamics in certain scenarios more faithfully captured
by our method (Figure 3).

We propose a two-way coupled Eulerian spray simulation method
based on a two-continua representation: water droplets and air are
represented as two distinct continua that co-exist at each point in
space. Each field - air and water - has its own volume fraction
(the relative fraction of an infinitesimal volume it occupies) and ve-
locity. Figure 2 illustrates real spray phenomena that we can to
some extent capture qualitatively with our method: compare Fig-
ures 1 (lower part) and 2.a for the characteristic v-shaped patterns
arising in waterfalls, as well as Figure 2.b with Figures 6 and 10
for the intricate patterns arising in evolving spray. The fundamen-
tal equations, theoretical justifications and assumptions behind the
two-continua approach are not new - they have been developed and
well studied in applied physics for more than a decade [Sirignano
1999; Brennen 2009]. We present a number of contributions that
make numerical simulation of the two-continua approach feasible
for computer graphics:

• A two-continua Poisson equation that fits into the operator
splitting methodology

• A diffusion equation modeling droplet mass flux and an un-
conditionally stable discretization thereof

• A semi-implicit discretization of the drag force which exhibits
improved stability over explicit discretization

• An Eulerian algorithm for simulating spray as a two-continua
for computer graphics

We demonstrate and validate the properties of our model and al-
gorithm with several examples. We focus solely on the dynam-
ics of spray and refer to related work on how to handle transitions
from water to spray, including how spray is generated from inter-
facial shear stress, jet breakup and other processes [Peachey 1986;
Fournier and Reeves 1986; Sirignano 1999; Takahashi et al. 2003;
Losasso et al. 2008; Mihalef et al. 2009; Brennen 2009].

2 Related Work

For an applied physics overview of the theory behind and funda-
mentals of spray computations, we refer the reader to the books by
Sirignano [1999] and Brennen [2009]. Below we categorize related
work in computer graphics according to how the droplets and the
surrounding air is represented.

Lagrangian Representation: Peachey [1986] and Fournier and
Reeves [1986] independently pioneered techniques for birthing

symbol description
αa air volume fraction
αw water droplet volume fraction
ᾱw αw interpolated to voxel faces
d diffusion constant to control amount of diffusion

∆t time step of current iteration
∆tuser time step specified by the user

∆x the side-length of a voxel
CD drag coefficient

fa←w interaction force density acting on air
fa→w interaction force density acting on water droplets
Fa←w interaction force acting on air
Fa→w interaction force acting on water droplets

g gravitational acceleration
(
(0,−9.81, 0)m

s2

)
k time step number
νa kinematic viscosity of air

(
1.51 · 10−5m2

s

)
p pressure in spray
r droplet radius

rmin minimum user-specified droplet radius
rmax maximum user-specified droplet radius
Re Reynolds number (2r |urel| /νa)
ρa air density

(
1.20 kg

m3

)
ρw water density

(
997 kg

m3

)
σa CFL number for air advection step
σw CFL number for water droplets
ua air velocity (ua = (ua, va, wa))
uw water droplet velocity (uw = (uw, vw, ww))
urel relative velocity (ua − uw)
ũa air velocity after solving for advection and forces
ũw water velocity after solving for advection and forces

Table 1: Notation used throughout the paper.

spray particles from waves and for simulating the trajectories of
the spray particles using Newtonian mechanics based on gravity.
Fournier and Reeves included air drag as well. Several authors have
proposed variations and combined with various methods for simu-
lating the water [O’Brien and Hodgins 1995; Thürey et al. 2006;
Chentanez and Müller 2010; Ihmsen et al. 2012]. As a general rule
the spray particles do not interact, and the air flow - on which the
drag force is based - is zero or procedurally generated. Thus these
methods do not feature the two-way coupling with an air field in-
cluded in our method. We stress however that our work remains
orthogonal to and is intended to be used in combination with the
Lagrangian spray methods.

Eulerian Representation: In this review we include previous work
on simulating two-fluid mixtures as these methods can be used for
spray simulation. Multiphase simulations - where air and water are
separated spatially - enable the simulation of droplets dispersed in
air [Losasso et al. 2006]. However, such an approach is typically
not a feasible simulation method for water spray in computer graph-
ics due to the large scale of scenes. To simulate cumuliform clouds
(mixtures of air and water vapor), a single-phase fluid model is in-
stead used by Miyazaki et al. [2002]. Mizuno et al. [2003] simu-
late two-fluid volcanic cloud mixtures using a similar single-phase
gas solver augmented with a buoyancy force. Liu et al. [2008] rec-
ognize the need for a true two-fluid model for simulating tornados
as a mixture of air and dust. However, separate mutually indepen-
dent pressure solvers are applied to each of the phases which are
coupled only through a drag force. A true variable density single-
phase gas solver is used by both Kang et al. [2010] and Bao et
al. [2010] to simulate miscible fluids under the assumption that the
densities of the individual fluids do not change. All of these Eule-
rian methods are unable to model that spray is able to compress and
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Figure 3: Domain filled with a uniform water volume fraction of 0.2. Using our method, the air rises, and the droplets fall under gravity,
compress at the bottom and are forced up under the internal obstacle. Existing Eulerian methods in computer graphics are all in hydrostatic
equilibrium at the outset and retain the shape in the left-most image throughout the simulation (see the accompanying video).
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Figure 4: Our solver uses an operator splitting approach.

will exhibit hydrostatic equilibrium in certain cases where the air is
supposed to rise and the droplets fall (Figure 3).

Lagrangian Water Droplets and Eulerian Air/Mist Flow: The
first to present a combined Lagrangian-Eulerian method for simu-
lating water spray in computer graphics are Takahashi et al. [2003].
Spray particles are emitted from high curvature water regions and
affected by gravity and drag forces interpolated from the air flow
of the underlying Eulerian air simulation. Mist is emitted from the
spray particles and subsequently diffused and dissipated. Song et
al. [2005] extend this work by proposing a method which features
a two-way momentum transfer between the droplets and the air, and
Kim et al. [2006] simulate spray as incompressible using droplets
whose velocities are used as a force in a separate air simulation
that passively advects mist emitted from the droplets. The method
by Mihalef et al. [2009] also features two-way momentum trans-
fer between water droplets and air, and in addition contributes with
a more accurate drag force model. Losasso et al. [2008] argue
that spray is compressible and propose a two-way coupled parti-
cle level set and diffuse SPH method that enables a smooth transi-
tion between ballistic droplet motion in the gravitational field and
incompressible fluid behavior. A secondary one-way coupled air
simulation is used to simulate the dynamics of mist sourced from
the spray particles.
The Eulerian representations of air, spray and mist proposed by the
methods in this category involve a gas solver. This implies that the
Eulerian phase exhibits hydrostatic equilibrium for the example in
Figure 3: the Eulerian mist will be in equilibrium, and while the
Lagrangian droplets will fall, the air will also initially be in equilib-
rium - thus not giving rise to a physically plausible drag force.

3 Two-continua Method

Water droplets in a spray deform, collide and split up into smaller
droplets through complex transformations [Villermaux and Boss
2009]. Here we adopt a simplified model in which droplets are
modeled as spheres with varying radii. Instead of tracking in-
dividual droplets, we represent air and water volume fractions,
{αw, αa} ∈ [0; 1], that denote the relative amount of water droplets
and air in an infinitesimal volume (voxel in the discrete case) at each
point. Each dependent variable in the dynamics equations is an

instantaneous average over this infinitesimal volume that includes
both water droplets and air. The basic assumption is that droplets
are small compared to the voxel size, which will typically be true
for computer graphics applications since we are simulating large
scale scenes at relatively low resolution. The velocity of air ua

and water droplets uw are typically different and hence stored sep-
arately at each point. We couple these velocities through an interac-
tion force and a pressure projection. Our spray algorithm subjects
the fundamental equations to an operator splitting approach sim-
ilar to that introduced to graphics by Stam [1999]. Likewise our
method involves advection, diffusion, force and pressure projection
steps resulting from conservation of mass and momentum (Figure
4). All symbols used throughout the paper can be found in Table 1.

3.1 Conservation of Mass and Momentum

Ignoring thermodynamical effects, the dynamics of a two-continua
mixture of water droplets and air is governed by the following equa-
tions that model the conservation of mass and momentum [Sirig-
nano 1999; Brennen 2009]:

αa + αw = 1 (1)
∂

∂t
(αaρa) +∇ · (αaρaua) = 0 (2)

∂

∂t
(αwρw) +∇ · (αwρwuw) = 0 (3)

αaρa
Dua

Dt
= αaρag + fa←w − αa∇p (4)

αwρw
Duw

Dt
= αwρwg + fa→w − αw∇p (5)

Eqs. (2) and (3) describe mass conservation of respectively the air
and the water droplets, whereas Eqs. (4) and (5) describe conser-
vation of momentum. We note that Dua

Dt
≡ ∂ua

∂t
+ (ua · ∇)ua

and Duw
Dt
≡ ∂uw

∂t
+ (uw · ∇)uw are the material derivatives, and

refer to Table 1 for the definition of the remaining symbols. Our
contribution in this section is to re-formulate the mass conservation
equations and derive a Poisson equation that fits into the operator
splitting framework typically used in graphics. We first eliminate
Eq. (1) and the unknown αa by defining αa ≡ 1 − αw. Next, we
make the assumption that the densities of the two phases, ρa and
ρw, remain constant. This assumption precludes us from modeling
velocities above the speed of sound and compression of air pockets
entrapped in liquid, but allows us to divide the densities out of Eqs.
(2) and (3). With these two simplifications, adding Eqs. (2) and (3)
causes the time derivatives to cancel out and we obtain

∇ · (αwuw + (1− αw)ua) = 0 (6)

This equation states that a weighted sum of the air and water veloc-
ity fields is divergence free, and allows us to model that air entering
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a voxel is able to push droplets out and vice versa. Note that when
αw is zero or one, Eq. (6) reduces to the usual incompressibil-
ity constraint for air and water respectively. Assuming an operator
splitting approach and using a forward Euler discretization of the
time derivative, the pressure projection step becomes

ua = ũa −
∆t

ρa
∇p (7)

uw = ũw −
∆t

ρw
∇p (8)

Inserting Eqs. (7) and (8) into Eq. (6) and re-arranging terms, we
obtain the variable-coefficient Poisson equation

∇·(αwũw + (1− αw)ũa) =
∆t

ρaρw
∇·[(ρw − αw(ρw − ρa))∇p]

(9)
which we solve in combination with Eqs. (3), (4) and (5). These
equations enforce αw ∈ [0; 1] for all t > 0 provided it holds at t =
0 and αw varies smoothly in time: αw = 0⇒ ∂αw/∂t ≥ 0 by Eq.
(3) and αw = 1⇒ ∂αw/∂t ≤ 0 by Eqs. (3) and (6). To implicitly
define a ground level, we furthermore define p = p′ − ρa|g|y,
where p′ is the true pressure and y is the height [Bridson 2008].
In the case of the two-continua equations this means that αaρag
cancels out from Eq. (4) and αwρwg is replaced by αw(ρw − ρa)g
in Eq. (5).

3.2 Droplet Diffusion

When the relative velocity between air and water urel is sufficiently
large, the interfacial shear stresses produce waves on the droplets
that transition into smaller droplets transported into the air by tur-
bulent motions. Empirical studies of annular flows in vertical pipes
have shown that at the interface between air and water, the mass
flux of droplets into the air region correlates with the square root
of the interfacial shear stress [Brennen 2009, p. 236]. Since the
stress is proportional to the velocity gradient for a Newtonian fluid,
we represent the magnitude of the mass flux by d

√
|urel|. We then

model the mass flux via a diffusion process operating on the volume
fraction αw and the velocity uw. We exemplify here with diffusion
of the volume fraction. Velocity diffusion is done similarly compo-
nent wise. We make the assumption that the flux of αw at a certain
point in space will be in the direction of and proportional to the
negative gradient of αw: droplets are then transported from dense
droplet regions into regions dominated by air and the magnitude of
the flux depends on the difference in water droplet volume fraction.
The flux density thus becomes

Φ = −d
√
|urel|∇αw (10)

Inserting this flux density into the general formulation for a con-
servation law, ∂αw

∂t
+∇ ·Φ = 0, results in the diffusion equation

∂αw

∂t
−∇ ·

[
d
√
|urel|∇αw

]
= 0 (11)

which must be solved at every grid point.

3.3 Air and Water Droplet Interaction

We employ a macroscopic model to describe the two-way interac-
tion forces between water droplets and air - which for the results
in this paper is restricted to a drag force. The drag force is par-
allel to and depends non-linearly on the relative velocity between
water droplets and air. This makes an explicit discretization of
the drag force infeasible for computer graphics as it is subject to
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Figure 5: The air- and water-velocity norms after application of
drag forces (shown on a log-scale) for a constant initial air velocity
of norm 20m/s, initial water velocities of norm 10m/s distributed
on a circle, a time step of 0.005s (i.e. an order of magnitude smaller
than 1/24s) and a droplet radius of 0.1mm. The resulting velocity
norms should be in the interval [0; 20]. An explicit discretization of
the drag force leads to over-shoots in the air velocity norm which
remains bounded using our semi-implicit discretization.

a stricter time step restriction than that imposed by the CFL con-
dition. To combat this problem, we propose a semi-implicit dis-
cretization which in practice does not impose further time step re-
strictions (Figure 5). This discretization is not restricted to Eulerian
methods but can be applied to the particles in a Lagrangian frame-
work as well.

The drag force acting on a water droplet is [Mihalef et al. 2009]:

Fa→w =
1

2
CDρaπr

2 |urel|urel (12)

where CD = 24/Reγ . To represent water droplets with varying
radii without introducing additional fields, we assume that the ra-
dius of a droplet correlates with αw. This heuristic assumption is
based on the intuition that - as the concentration of droplets in-
creases - it is likely that droplets will collide and coalesce. In par-
ticular the radii of the droplets are computed at the voxel faces us-
ing linear interpolation based on the water volume fraction: r =
ᾱwrmax + (1 − ᾱw)rmin. Based on experimental observations
[Sirignano 1999], γ = 1.0 for Re ≤ 1, γ = 0.72 for Re > 30 and
linear interpolation can be used for Reynolds numbers in-between.
To turn Eq. (12) into a force density required by the two-continua
equations, we divide by the volume of a spherical particle 4

3
πr3 and

multiply by the volume fraction αw (to average over the total vol-
ume of the voxel as opposed to over the volume occupied by water
droplets), thus obtaining:

fa→w = β |urel|1−γ urel (13)

where β = 9
2γ
αwρaν

γ
a r
−(1+γ). To conserve momentum, the force

density fa←w = −fa→w acts on the surrounding air, and when
using operator splitting we need to solve the following two coupled
ODEs at each grid point:

dua

dt
= fa←w/((1− αw)ρa) = −βa |urel|1−γ urel (14)

duw

dt
= fa→w/(αwρw) = βw |urel|1−γ urel (15)

where βa = β/((1 − αw)ρa) and βw = β/(αwρw). Below we
derive our semi-implicit discretization which decouples Eqs. (14)
and (15) as well as the individual coordinate equations. If the reader
is merely interested in the results of these derivations it is safe to
skip the remainder of this section and consult Eqs. (16) and (17)
for the γ = 1 case, in addition to appendix A for the γ 6= 1 case.
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Figure 6: A source moves from left to right over a distance of 200m and creates an intricate pattern of water droplets in its trail.

The derivations proceed as follows: considering first the case γ =
1, we decouple Eqs. (14) and (15) by inserting the known values
to the current time step ukw and uka into Eqs. (14) and (15) respec-
tively:

dua

dt
= −βa

(
ua − ukw

)
duw

dt
= βw

(
uka − uw

)
The analytical solutions at time step k+1 to these decoupled linear
ODEs are given by:

uk+1
a = ukw + e−βa∆t(uka − ukw) (16)

uk+1
w = uka − e−βw∆t(uka − ukw) (17)

Considering next the case γ 6= 1 we have a non-linear dependence
on the relative velocity. To avoid notational clutter, we exemplify
the solution approach for the u component of the air velocity in
2D. The approach is similar for all components of both the air
and water velocities in 3D and the resulting expressions can be
found in Appendix A. To decouple Eqs. (14) and (15) as well as the
equations for the individual coordinates, we insert known values at
time step k into Eq. (14) as follows:

dua

dt
= −βa

(
(ua − ukw)2 + (vka − vkw)2

) 1
2

(1−γ) (
ua − ukw

)
= βaf(ua) (18)

Using a separation of variables approach [Coddington 1989] we
solve Eq. (18) analytically. Multiplying by dt, dividing by f(ua)
and integrating from t to t+ ∆t, we obtain∫ ua(t+∆t)

ua(t)

dua

f(ua)
=

∫ t+∆t

t

βadt (19)

To obtain the solution uk+1
a we re-arrange Eq. (19) and solve the

resulting equation

F(uk+1
a ) = F(uka) + βa∆t (20)

where the right hand side is known and F is the antiderivative
F ′(ua) = 1

f(ua)
. It is easy to verify using Mathematica [Inte-

grator 2013] that the analytical solution to the indefinite integral
F(ua) =

∫
dua
f(ua)

evaluates to

1

1− γ (ukw − ua)(γ−1)×

2F1(
1

2
(1− γ),

1

2
(1− γ);

1

2
(3− γ);− (vka − vkw)2

(ukw − ua)2
) (21)

where 2F1 is a hypergeometric function. To avoid expensive nu-
merical root finding, we approximate the hypergeometric function
2F1 by its first order accurate Taylor expansion around the origin
(the constant 1) on the left hand side of Eq. (20). This is a rea-
sonable approximation since 2F1 = 1 at the origin and decreases
monotonically and slowly towards zero as its independent variable
(the fourth argument) goes towards−∞. Using this approximation
we can solve Eq. (20) analytically and obtain

uk+1
a = ukw − ((1− γ)η)

1
γ−1 (22)

where η is the right hand side of Eq. (20). It is straightforward and
relatively fast to evaluate Eq. (22), and an identical procedure for
the remaining velocity components results in similar expressions
which can be found in appendix A. Note that the right hand side of
Eq. (22) is comprised of ukw minus a correction term, and hence
exhibits the same structure as Eq. (16).

3.4 Implementation

This section describes the implementation and discretization details
of the mathematical models. We employ a staggered grid repre-
sentation with velocities stored at the voxel faces, and pressure and
volume fractions stored at voxel centers [Fedkiw et al. 2001]. Algo-
rithm 1 provides an overview of the individual steps of our method.

Time Step Restrictions: All steps of our spray algorithm - except
for the advection steps employing the WENO scheme to discretize
the convective derivatives (see below) - are based on (semi-)implicit
discretizations. These discretizations have proven stable for all
magnitudes of time steps tested. Hence the time step is restricted
solely by the CFL condition imposed by the WENO scheme: ∆t =
min(∆tuser, σw∆x/max(|uw|)). As will be elaborated below, the
air velocity magnitude does not impact the overall time step of our
algorithm.

Water Volume Fraction Advection (Discretization of the Mass
Conservation Equation (Eq. (3))): In order to enable water
droplets to compress and accumulate in a voxel it is important to
use a conservative scheme for advecting the water droplet volume
fractions. We employ a fifth order accurate WENO finite volume
scheme in space combined with a third order accurate Runge Kutta
in time (WENO+RK) [Jiang and Peng 1999; Shu 2009]. This en-
sures that the mass conservation property carries over to the discrete
domain.

Diffusion Discretization (Eq. (11)): To ensure an uncondition-
ally stable diffusion step we discretize implicitly in time using a
first order accurate backward finite difference. We use second or-
der accurate central difference approximations to the gradient and
divergence operator. To obtain a compact seven-point stencil, we
discretize ∇αw at voxel faces, half-way between voxel centers. In
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Algorithm 1 Spray algorithm. See Table 1 for a definition of sym-
bols, Figure 4 for an overview and section 3.4 for details.

while t < tend do
∆t = computeDt(ukw, σw, ∆tuser)

{Operations on water droplet volume fraction (αw):}
α̃kw = advect(αkw, ∆t)
αk+1

w = diffuse(α̃kw, ∆t)
ᾱk+1

w = interpolateToVoxelFaces(αk+1
w )

(ma, mw) = computeMasks(ᾱk+1
w )

{Operations on velocity fields (ua and uw):}
ũkw = advect(ukw, ∆t, mw)
ũka = advect(uka , ∆t, ma, σa)
(fa←w, fa→w) = interactionForceDensity(ũka , ũkw, ∆t, ᾱk+1

w )
ũkw = addForceDensity(ũkw, ∆t, mw, fa→w, g)
ũka = addForceDensity(ũka , ∆t, ma, fa←w, g)
ũkw = diffuse(ũkw, α̃kw, ∆t)
(uk+1

w , ũka) = project(ũkw, ũka , ᾱk+1, ma, mw)
uk+1

a = clampToMaxVelRatio(ũka , uk+1
w , ma, mw)

extrapolateIntoAirRegion(uk+1
w , mw)

extrapolateIntoWaterRegion(uk+1
a , ma)

{Other operations:}
advanceSourcesAndObstacles(∆t)
saveFields(uk+1

a , uk+1
w , αk+1

w )
t = t+ ∆t

end while

1D we have

αk+1
wi − α

k
wi

∆t
−
bi+1/2∇αk+1

wi+1/2
− bi−1/2∇αk+1

wi−1/2

∆x
= 0 (23)

where ∇αk+1
wi+1/2

= (αk+1
wi+1

− αk+1
wi )/∆x and b = d

√
|urel| is

computed halfway between grid points using linear interpolation.
The above procedure generalizes coordinate wise to higher dimen-
sions. At the border of the domain and at the surface of internal
obstacles we set the flux in Eq. (10) to zero by enforcing the Neu-
mann boundary condition ∇αw = 0. We solve this linear system
using a multigrid solver [Briggs et al. 2000]. A similar strategy is
applied to each coordinate of uw in the velocity diffusion step.

Interpolation to Voxel Faces: The discretized pressure projection
step (see below) requires values of the volume fractions defined at
voxel faces and we compute these using a second order accurate
linear interpolation.

Mask Computation: To facilitate faster velocity advection and
force steps, these are performed only at faces where the respec-
tive air and water masks are non-zero. In particular, masks are
computed to identify which voxel faces contain fractions of water
droplets and air. The water droplet mask,mw, is set to 1 if αw > 0,
otherwise it is set to 0. The air mask, ma is set to 0 if αw ≥ 1 and
set to 1 otherwise (see below for a discussion of why αw /∈ [0; 1]
can occur in the discrete case).

Velocity Advection and Forces (Discretization of the Momen-
tum Conservation Equations (Eqs. (4) and (5))): We apply the
WENO+RK numerical scheme to each component of the water
droplet velocity field. Because the magnitude of the air velocities
can be significantly larger than the magnitude of the water droplet
velocities, we currently solve the advection of air velocities using
BFECC [Dupont and Liu 2007] combined with semi-Lagrangian
advection. We iterate the air velocity advection step using the CFL

Figure 7: Water droplets initially placed in a vertical bar and bor-
dering still air (left) move downward with speeds 0.1m/s (middle)
and 30m/s (right). The water droplets diffuse into the air region at
a rate proportional to

√
|urel|.

number σa until the air velocity has advanced forward by ∆t. Ide-
ally WENO should be employed for the air velocities as well, but
in this case we favored speed over accuracy. The gravity force step
is discretized using a first order forward Euler method in time, and
the interaction forces are handled as described in section 3.3.

Pressure Projection (Discretization of the Poisson Equation
(Eq. (9))): The Poisson equation is discretized using second or-
der accurate central finite differences of the gradient and divergence
operators. The resulting linear system is solved using a multigrid
solver [Briggs et al. 2000] combined with the penalization method
for handling internal obstacles [Angot et al. 1999].

Air Velocity Clamping: Since the air density is orders of magni-
tude smaller than the water density, the coupled pressure solve can
result in air velocities orders of magnitude higher than the veloc-
ity of water droplets, which is physically plausible. Typically this
happens in areas under compression where αa � αw. In order to
reduce the number of sub-frame iterations due to restrictive CFL
conditions incurred by the air velocity, we clamp the air velocities
to be within a user specified ratio relative to the maximum water
droplet velocity. While this can introduce a small loss in volume
(quantified in section 4), the visual deviation is qualitatively small
(Figure 8) and thus feasible for computer graphics.

Velocity Extrapolation: To serve as boundary conditions for ad-
vection in the next iteration, velocity is extrapolated into regions
where its corresponding phase is undefined. The extrapolation is
performed using a fast sweeping method [Tsai et al. 2003] in the
gradient direction of the distance from the air and water regions
respectively.

A Note on the Properties of the Discrete Water Droplet Vol-
ume Fractions: The property αw ∈ [0; 1] does not carry over
to the discrete case: (1) the linear interpolation of αw to voxel
faces can cause a non-zero flux of water droplets into a voxel even
though αw = 1; and (2) forward Euler time discretization as well
as WENO is known to cause over- and under-shoots. Though reme-
dies have been proposed in cases where the maximum principle is
satisfied [Zhang and Shu 2011], these do not directly apply in the
case of the two-continua equations. During simulation we allow
αw /∈ [0; 1] as practice has shown that αw remains bounded in the
discrete case (section 4), and that clamping αw to [0; 1] results in
mass conservation issues. We do however clamp its interpolation at
voxel faces ᾱw to [0; 1] in order to ensure all steps of the algorithm
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Figure 8: Water droplets fall from a height of 100m. Top row shows results obtained with vortex particles, and the bottom row without
vortex particles (frame 135 shown in all cases). Identical input parameters (including vortex particle parameters) are used for all simulation
methods (letters denote columns from left to right): (a) Our method without air velocity clamping (b) Our method with air velocity clamping
(c) Variable density gas solver (d) Variable density gas solver with drag force (air velocity zero) (e) Constant density gas solver (f) Two-fluid
model of Liu et al.

are well behaved.

4 Results and Discussion

In this section we provide some background facilitating repro-
ducibility of our examples as well as a discussion of our method
and results. We refer the reader to the captions of Figures 1, 3, 6, 7,
8, 9, 10, and 11 for a description of the individual examples. Note
that a few additional examples are available in the accompanying
video. Table 2 lists properties of all simulations in this paper.

Our results are produced in the Windows operating system installed
on a Mac Pro with 7GB of memory and two Intel Xeon quad-core
2.80GHz CPUs. We used the VS2005 compiler with full optimiza-
tion enabled. The complete source code as well XML parameter
files to reproduce all examples in this paper will be made avail-
able online [Nielsen 2013]. The images are produced by rendering
αw with a ray marcher. For the examples in Figures 1, 6, 7, 8,
10, and 11 we use the open source vortex particle implementation
of Pfaff et al. [2009] to emit vortex particles in the spray sources
(between 100 and 400 particles each frame). For emission we fol-
low the strategy of Selle et al. [2005] where vortex particles are
seeded randomly with vorticity-direction orthogonal to the normal
of the source and the main flow direction. Furthermore the vor-
tex particles derive information from and act solely upon the water
droplet velocity field. Note that vortex particles model bulk volume
turbulence which does not accurately account for vorticity in mix-
tures of air and water droplets where the macroscopic behavior is
influenced by the interface dynamics. Hence our use of vortex par-
ticles limits the realism achievable, but on the other hand presents
a convenient way of breaking up the flow to force the underlying
spray dynamics to come more into play. In general we recommend

droplet radii ranging from rmin = 1µm to rmax = 1mm which
is within the range of rain drop radii that have been observed at
ground level [Villermaux and Boss 2009]. However, we use values
of rmax up to 10cm in most examples (Figures 1, 3, 9, 10, 11) to ex-
aggerate the difference in speed between small and large droplets.
The assumption that a linear relationship exists between the water
droplet volume fraction and the radii of water droplets in a voxel
allows us to model varying droplet radii without introducing addi-
tional fields. However, it also prevents our method from accurately
modeling scenarios where this assumption breaks down. It remains
to be investigated for which visual phenomena this is the case.

With one exception we use a CFL number of σw = 0.9 for all ex-
amples. The exception is Figure 9 where we conservatively chose
a CFL number of 0.1 to obtain a more accurate and smooth result.
For advection of air velocity we consistently use the CFL number
σa = 5. A maximum air/water velocity norm ratio of 5 was chosen
for all our examples, except Figure 8.a. In particular Figures 8.a and
8.b compare the results obtained using our method with and with-
out air velocity clamping. The simulation time is roughly doubled
without air velocity clamping, but qualitatively very little differ-
ence is observable. The remaining images in figure 8 illustrate the
results obtained using existing methods for Eulerian spray simula-
tion. For all methods a conservative WENO finite volume scheme
is employed for the advection step. Furthermore identical input pa-
rameters are used except that for the previous methods, the gravity
force suggested by Fedkiw et al. [2001] is used, and for Figure 8.d
an air velocity of zero is assumed for drag force computation. With-
out vortex particles, the flow for all methods compared in figure 8 is
predominantly laminar (bottom row), whereas the addition of vor-
tex particles breaks up the flow and forces the underlying dynamics
to come more into play (top row). We stress that identical input
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Figure 9: A sphere of droplets with initial water volume fraction
decreasing from left to right (1.0, 0.6 and 0.2) falls from a height of
200m. The images shown are after 200 frames. As the droplet size
and water volume fraction are correlated, this validates our ability
to capture that larger droplets fall faster.

Figure 10: A jet of droplets creates intricate patterns in the air.

parameters are used for all competing Eulerian methods in figure 8
and that the difference apparent is solely due to how the various dy-
namical models respond differently to the same input parameters.
The run-time of our spray solver is similar to that obtained using a
variable-density single-phase gas solver (Figure 8.c). We note that
the single-phase solvers and the two-fluid method of Liu et al. can
be run at higher CFL numbers if resorting to unconditionally stable
advection methods. The same may be true for our method, but this
remains to be investigated. Since all parts of our solver - except
for advection of αw and uw - are discretized (semi-)implicitly, the
advection step is currently the most limiting in terms of time step
restrictions. Recently a number of unconditionally stable schemes
for conservative advection have been proposed [Lentine et al. 2011;
Huang et al. 2012] and these hold promise to make our solver stable
for CFL numbers above one.

Though the discrete version of our method does not limit αw to
the interval [0; 1], αw remains bounded throughout the simulation
(Table 2). The highest compression (αw > 1) is observed for the
example in Figure 3. This is related to the relatively large deviation
from zero in the divergence norm (cf. Table 2) of the combined
velocity field after air velocity clamping and is due to the pressure
developing at the bottom. In particular this results in high air ve-
locities due to the density ratio between water and air. In the ac-
companying video a subtle jaggy motion can be observed for the
same example in the falling spray as it thins out. We hypothesize
this is due to the second order accurate linear interpolation of αw

fig type grid res αw |∇ · u|∞ avg time
(frame/iter)

1 s 256× 256× 64 [−0.3; 1.4] 1 · 10−6 1915 / 219
3 s 128× 128× 128 [−0.7; 3.4] 2 · 10−1 505 / 115
6 s 512× 128× 64 [0.0; 1.1] 3 · 10−7 274 / 154
7 s 128× 128× 32 [0.0; 1.0] 9 · 10−7 262 / 90

8.a s* 256× 256× 64 [−0.1; 1.9] 3 · 10−7 1200 / 232
8.b s 256× 256× 64 [−0.1; 1.8] 4 · 10−7 660 / 127
8.c v 256× 256× 64 [0.0; 1.0] NA 667 / 142
8.d v 256× 256× 64 [0.0; 1.0] NA 490 / 131
8.e c 256× 256× 64 [0.0; 1.0] NA 196 / 67
8.f t 256× 256× 64 [0.0; 1.0] NA 531 / 185
9 s 64× 128× 64 [−1.3; 2.6] 1 · 10−7 24 / 15

10 s 256× 256× 64 [−0.4; 2.1] 7 · 10−5 1671 / 421
11 s 128× 256× 128 [−0.2; 2.4] 3 · 10−4 1504 / 260

Table 2: Properties of examples. The type denotes: (s) our spray
algorithm, (s*) our spray algorithm without air velocity clamping,
(v) variable density gas solver, (c) constant density gas solver, (t)
the two-fluid model of Liu et al. The αw column gives the range of
water volume fractions observed during the course of the simula-
tion, and the |∇ · u|∞ column gives the infinity norm of the aver-
age absolute divergence in a voxel of the combined velocity field
(αwuw + (1− αw)ua) after air velocity clamping. The last col-
umn lists the timings in seconds per frame and iteration.

to the voxel faces, and alternatives should be investigated. Finally,
artificial sticking to the internal obstacle is also apparent - a prob-
lem which could be alleviated by using the method of Batty et al.
[2007].

5 Conclusion and Future Work

The digital modeling of spray phenomena frequently challenges
state of the art methods applied by the animation and visual ef-
fects industries. Taking outset in existing work in applied physics,
we propose an Eulerian two-continua approach to spray simulation
which we demonstrate is able to more faithfully capture the dynam-
ics in certain scenarios where existing Eulerian methods fail. Our
contributions include an algorithm for spray simulation which fits
into the operator splitting framework popular in graphics as well
as (semi-)implicit discretizations with increased stability behavior.
We demonstrate the capabilities of our algorithm with several ex-
amples and are to some extent able to qualitatively capture char-
acteristics of spray observed in photographs. We envision several
exciting directions for future work that can leverage on the meth-
ods proposed in this paper: the development of turbulence mod-
els for spray, a closer integration of and coupling between Eule-
rian and Lagrangian spray simulation methods, the investigation
of more accurate air-droplet interaction models, the application of
our two-continua approach to other phenomena such as air-dust and
bubble flows to mention a few. In addition, fluid control methods
previously developed for gaseous simulations [Nielsen et al. 2009;
Nielsen and Christensen 2010] should be investigated in the context
of spray simulation. To facilitate future advancements in this area
we make our source code publicly available for download.
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A General Formulation of Drag Force

Referring to Table 1 and section 3.3 for a definition of the symbols
not defined here, a general formulation of our drag force from sec-
tion 3.3 in the case γ 6= 1 is as follows. Let the indices p ∈ {a,w},

q = {a,w}\p and i ∈ {x, y, z}. Furthermore let up,i denote the
i’th component of velocity up. Then the drag force is

uk+1
p,i = ukq,i − (τηp,i)

− 1
τ

where

τ = 1− γ

ηp,i =
1

τ
ψi
− 1

2
τ (F + βp∆t)

F = 2F1(
1

2
τ,

1

2
τ ;

1

2
τ + 1;−φi

ψi
)

φi =
∑

j∈{x,y,z}\i

(
ukp,j − ukq,j

)2

ψi =
(
ukp,i − ukq,i

)2
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